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The goal of Extreme Value Theory (EVT) is to make
statistical estimates of the likelihood and severity of ‘ran-
dom’ events which have not been observed, based on
observed data–for example:

The level of flooding that might be expected in north-
eastern Australia 1 year in 50.

The loss on the S&P 500 Index that should only be
exceeded 1 day in 100 and the average of losses in excess
of this level.
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This is a very ambitious goal but two approaches to this
sort of problem are very tractable due to remarkable limit
theorems analogous to the Central Limit Theorem.

These results can be unified, explained and extended in
terms of differential invariants for the affine group on
the line.

Before describing that, I want to illustrate the impact
of good estimates of extremes in a context that every-
one is familiar with because of recent events in financial
markets around the world.
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Daily returns (percentage gain or loss) on an investment
(for instance in an equity market index fund) appear to
be random.

If we assume that they are independent, identically dis-
tributed random variables, we can use EVT to make
estimates of the risk of large losses.

This model is ‘wrong’, like all models (even in physics).
What matters is the accuracy of its predictions.

Cascon & Shadwick RIMS January 2011 4



Analysis
Omega

Imagine that we have an accurate way of estimating ‘risk’
for both buyers and sellers in a stock market.

Suppose that the average daily return is positive. We
should expect that the risk to a buyer will be less than
the risk to a seller. While this remains the case the
market should continue to rise.

But if the buyer experiences higher risk than the seller,
selling will gain momentum and the market may go from
expansion to contraction.
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Now suppose the buyer’s risk is greater than the seller’s
risk but the market does not change direction and the
expansion continues.

This is an unstable expansion–a potential market bubble–
which may end with a crash as the overdue contraction
arrives.

If this simple model of ‘market motion’ were correct, we
should see the evidence in historic data.

Here’s what this model predicted in the case of Ireland’s
major stock market index from January 2000 to Decem-
ber 2010.
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Predicted Expansions for the Irish Stock Index ISEQ
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But if expansions work according to this model, contrac-
tions must as well.

When the average return is negative, a seller’s risk should
be less than a buyer’s.

In such a case we should see stable contraction.
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When the return is negative but the seller’s risk is greater
than the buyer’s, we should see a change in market di-
rection.

If such a change does not occur, we have an unstable
contraction–a potential ‘anti-bubble’ of panic selling.

Here’s what this model predicted in the case of Ireland–
as the Irish economy was subjected to the wrong interest
rates and a disastrous bank bail-out.
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Expansion and Contraction Predictions for ISEQ
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First Approach to Extremes: Sample Maxima

Suppose we make independent draws of samples of size
N from a fixed probability distribution.

The maximum of each sample is another random vari-
able. It can be distributed in only one of three ways as
N tends to ∞.

This is the result of a remarkable limit theorem first
stated by Fisher and Tippett in 1928.
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We consider Probability Distributions

F : [α(F ), ω(F )] → [0,1] (1)

where F is C2 and F
′
> 0.

We may have α(F )=-∞ and/or ω(F )=∞.
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First Approach to Extremes: Sample Maxima

Let X1, . . . , XN be a sample of N independent, identically
distributed random variables with distribution function
F . Let XMax be the sample maximum.

If XMax < r then all of the sample draws must be less
than r and the probability of this is FN(r).

Thus the distribution of XMax is FN .
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In 1928 Fisher and Tippett addressed the question:

Does there exist a sequence of ‘location-scale’ transfor-
mations x → aNx + bN and a distribution G such that

FN(aNx + bN) → G(x) (2)

as N tends to ∞?
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Intuition: Any such G should be the distribution of its
own extremes. Fisher and Tippett proved that there
are only three families of distributions with this ‘stability
property’.

Φ(x, α) = e−(−x)α
, x ∈ (−∞,0], α > 0 (3)

Ψ(x, α) = e
−1
xα , x ∈ [0,∞), α > 0 (4)

Λ(x) = e−e−x
, x ∈ (−∞,∞). (5)

( Weibull, Fréchet and Gumbel distributions respectively)
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Fisher and Tippett showed that the sample maxima limit
for the Normal distribution was Gumbel type. The con-
vergence was extremely slow. They found that the Weibull
type Φ(x, α) was a better approximation, even though it
was not the ultimate limit.

We shall return to the question of this ‘Penultimate Ap-
proximation’.

They gave no method for determining for a given distri-
bution F whether or not it had a limit and if so, what
the limit was.

It took 15 years to fill this gap.
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In 1943 Gnedenko provided an independent derivation of
the ‘three types’ theorem as well as necessary and suf-
ficient conditions for convergence (without the C2 as-
sumption).

He showed that Domains of Attraction (the collection of
distributions which converges to a given type) depended
only on the limiting shape of the distribution as x → ω(F )

Cascon & Shadwick RIMS January 2011 17



Analysis
Omega

Gnedenko’s necessary and sufficient condition for F to
be in the domain of attraction of the Fréchet distribution
F (x, α) is

lim
x→∞

1− F (x)

1− F (tx)
= tα (6)

for all t > 0.

For the Weibull distribution W (x, α) ω(F ) = B must be
finite and

lim
x→0−

1− F (tx + B)

1− F (x + B)
= tα (7)

for all t > 0.
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Gnedenko gave a variety of necessary and sufficient con-
ditions for F to be in the domain of attraction of the
Gumbel distribution.

He was not satisfied that any of them were either defini-
tive or practical.

We provide a remedy for this in the C2 case.
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The ‘three types’ of distributions Fisher and Tippett dis-
covered are really a one parameter family (up to affine
transformations).

They are more conveniently denoted on variable domains
depending on α as follows:

Eα(x) = exp(
−1

(1 + x
α)α

), α &= 0 (8)

This is the Weibull type, defined on [−∞,−α] when α < 0
and is the Fréchet type defined on [−α,∞, ] when α > 0.

As |α| → ∞, both types have the Gumbel distribution
E∞ = e−e−x

as their limit.
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Second Approach to Extremes: ‘Peaks over threshold’

Does the distribution of a random variable X, conditional
on X exceeding a threshold T , tend to a limit as T tends
to ω(F ) up to location scale transformations?

In this case we say F has a PoT limit.

In 1975 Picklands showed that there was a significant
connection between PoT limits and Domains of Attrac-
tion of extreme value distributions.
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F is in the domain of attraction of Eα if and only if the
PoT limit of F is,up to a location-scale transformation,
a Generalized Pareto distribution Gα as x → ω(F ) where

Gα(x) = 1−
1

(1 + x
α)α

, α &= 0 (9)

and

G∞(x) = 1− e−x (10)

Gα is defined on [0,−α] when α < 0 and on [−α,∞] when
α > 0. As |α| →∞ , both types have the exponential
distribution G∞ = 1− e−x as their limit.
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But now we have a mystery.

Where do these distributions come from?

Everything in the Domain of Attraction of Eα is con-
verging to everything else in that Domain of Attraction.

What, if anything, is special about the Generalized Pareto
distributions?

The resolution of this mystery will be left for Part 2.
It has significant implications for statistical modelling of
extremes.
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The Geometry of Extreme Value Distributions is the in-
formation is invariant under the proper affine group on
the line A.

A distribution F is in the domain of attraction of G if
and only if there is a 1-parameter family gλ ∈ A such
that

[ lim
λ→∞

Fλ ◦ gλ] = [G], (11)

where [G] denotes the A-equivalence class of G.
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It will be convenient to replace F by I = log(F ) which is
particularly well suited to studying the equivalence class
of powers of F .

The equivalence problem for an invariant function I un-
der the proper affine group is a simple one.

We will show that equivalence classes are determined by
one functional relation J = H(I) where

J =
Ixx

I2
x

. (12)
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The Equivalence Problem

Coframe for the affine group

θ1 = ydx (13)

θ2 =
dy

y
(14)

Coframe adapted to the (invariant) I = log(F )

ω1 = dI =
Fx

F
dx (15)

ω2 =
dy

y
(16)
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We have

ω1 = Kθ1 (17)

where

K =
Fx

yF
(18)

Any diffeomorphism that preserves both co-frames also
preserves K so we have a second functionally indepen-
dent invariant.
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Now

dI = ω1 (19)

and
dK

K
= Jω1 − ω2, (20)

where

J =
FxxF

F2
x

− 1 =
Ixx

I2
x

. (21)
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But J depends only on x so it must be a function of I.

It follows that the remaining information is in the func-
tional dependence of J on I.

This dependence relation determines equivalence classes
of F .
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Suppose that [Fλ] = [F ] for all λ > 0.

Because the relation J = H(I) determines equivalence
classes we must have JFλ = H(IFλ)

From the definitions of IF and JF we have IFλ = λIF

and JFλ = 1
λJF so 1

λH(I) = H(λI) for all λ > 0.

Differentiating with respect to λ and evaluating at λ = 1
shows that [Fλ] = [F ] if and only if there is a constant c

such that

H(I) =
c

I
(22)
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Thus [Fλ] = [F ] if and only if J = c
I for constant c.

Each value of c determines a distinct equivalence class.

It is easy to see that the Extreme Value distributions
provide normal forms for these equivalence classes.

The equivalence class of Eα is given by c = 1 + 1
α for

α &= 0 and E∞ is given by c = 1.
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The Geometry of Domains of Attraction

The invariants I and J also provide us with a new affine
invariant of the 1-parameter family of equivalence classes
[Fλ] because

IFλJFλ = IFJF . (23)

for all λ ε (0,∞).

Thus the product of these two invariants is independent
of λ. This result is the key to our characterisation of
domains of attraction.
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Theorem 1: If F is a C2 distribution on [α(F ), ω(F )],
a necessary and sufficient condition for F to be in the
domain of attraction of Eα is that

lim
x→ω(F )−

IFJF = 1 +
1

α
. (24)

A necessary and sufficient condition for F to be in the
domain of attraction of E∞ is that

lim
x→ω(F )−

IFJF = 1. (25)
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It is easy to check that all of the standard probability
distributions belong to the Domain of Attraction of the
Extreme Value distributions Eα and E∞.

It is also easy to verify that for each α the Generalized
Pareto distribution Gα is in the Domain of Attraction of
Eα and that G∞ is in the Domain of Attraction of E∞.
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The following example, due to Von Mises, shows that
smooth distributions need not have an Extreme Value
limit.

If F is defined on [0,∞] by

F (x) = 1− exp(−x−
sin(x)

2
). (26)

then IFJF has no limit as x →∞.
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IFJF has no limit as x →∞
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The ‘Penultimate Approximation’ for Normal Extremes

The Normal distribution’s IJ limit is 1 but it converges to
1 from below and very slowly. This illustrates the utility
of Fisher and Tippett’s Penultimate Approximation.

For example, E−20 has IJ = 1− 1
20 = 0.95. The Normal

IJ remains closer to this value than it is to 1 until x is
over 6 standard deviations above the mean.

At this point the Normal distribution differs from 1 only
in the 9th decimal place. In almost any statistical appli-
cation this difference is irrelevant.
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E−20 is a better approximation than E∞ for all x < 6.09

For x > 6.09 the Normal distribution differs from 1 by
only one part in 109.

Cascon & Shadwick RIMS January 2011 38



Analysis
Omega

We can see that the Normal distribution converges to
E∞ much more slowly than G∞ does.
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Or can we? Here’s the picture for another representative
of [G∞]
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Does it make sense to compare the value of IJ at the
same point x for these distributions?

We’ll show in Part 2 that the invariant IJ provides us
with an intrinsic means of making this comparison and
illustrate the importance of this for statistical estimation.

We’ll also reveal the geometry behind the relation be-
tween the Sample Maxima and PoT approaches.

But that’s for Monday...
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